Environmental micro-patterning for the study of spiral ganglion neurite guidance.

نویسندگان

  • Allen F Ryan
  • John Wittig
  • Amaretta Evans
  • Stefan Dazert
  • Lina Mullen
چکیده

The projection of neuronal processes is guided by a variety of soluble and insoluble factors, which are sensed by a fiber's growth cone. It is the differential distribution of such guidance cues that determine the direction in which neurites grow. The growth cone senses these cues on a fine scale, using extensible filopodia that range from a few to tens of mum in length. In order to study the effects of guidance cues on spiral ganglion (SG) neurites, we have used methods for distributing both soluble and insoluble cues on a scale appropriate for sensing by growth filopodia. The scale of these methods are at the micro, rather than nano, level to match the sensing range of the growth cone. Microfluidics and transfected cells were used to spatially localize tropic factors within the fluid environment of extending neurites. Micro-patterning was used to present neurites with stripes of insoluble factors. The results indicate that differentially distributed permissive, repulsive and stop signals can control the projection of SG neurites. Implications for future micro-patterning studies, for SG development and for the growth of deafferented SG dendrites toward a cochlear implant are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Promotion of neurite outgrowth and axon guidance in spiral ganglion cells by netrin-1.

OBJECTIVE To identify the expression of netrin-1, a diffusible chemoattractive molecule, and its receptor, deleted in colorectal carcinoma (DCC), in the developmentally mature inner ear, and to determine its effects on axon length and guidance in cultured auditory neurons. DESIGN Messenger RNA (mRNA) and protein expression of netrin-1 and DCC were identified in the organ of Corti and spiral g...

متن کامل

Characterization of spiral ganglion neurons cultured on silicon micro-pillar substrates for new auditory neuro-electronic interfaces.

OBJECTIVE One of the strategies to improve cochlear implant technology is to increase the number of electrodes in the neuro-electronic interface. The objective was to characterize in vitro cultures of spiral ganglion neurons (SGN) cultured on surfaces of novel silicon micro-pillar substrates (MPS). APPROACH SGN from P5 rat pups were cultured on MPS with different micro-pillar widths (1-5.6 μm...

متن کامل

Laminin and fibronectin modulate inner ear spiral ganglion neurite outgrowth in an in vitro alternate choice assay.

Extracellular matrix (ECM) molecules have been shown to function as cues for neurite guidance in various populations of neurons. Here we show that laminin (LN) and fibronectin (FN) presented in stripe micro-patterns can provide guidance cues to neonatal (P5) inner ear spiral ganglion (SG) neurites. The response to both ECM molecules was dose-dependent. In a LN versus poly-L-lysine (PLL) assay, ...

متن کامل

Expression of Wnt receptors in adult spiral ganglion neurons: frizzled 9 localization at growth cones of regenerating neurites.

Little is known about signaling pathways, besides those of neurotrophic factors, that are operational in adult spiral ganglion neurons. In patients with sensorineural hearing loss, such pathways could eventually be targeted to stimulate and guide neurite outgrowth from the remnants of the spiral ganglion towards a cochlear implant, thereby improving the fidelity of sound transmission. To system...

متن کامل

Tissue Engineering of the Inner Ear

Our knowledge of the regenerative ability of the auditory system is still inadequate. Moreover, new treatment techniques for hearing impairment using cochlear implant and tissue engineering, call for further investigations. Tissue engineering and regenerative strategies have many applications ranging from studies of cell behavior to tissue replacement and recently there have been significant ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Audiology & neuro-otology

دوره 11 2  شماره 

صفحات  -

تاریخ انتشار 2006